Multi-view constrained clustering with an incomplete mapping between views
نویسندگان
چکیده
منابع مشابه
Multiview Clustering with Incomplete Views
Multiview clustering algorithms allow leveraging information from multiple views of the data and therefore lead to improved clustering. A number of kernel based multiview clustering algorithms work by using the kernel matrices defined on the different views of the data. However, these algorithms assume availability of features from all the views of each example, i.e., assume that the kernel mat...
متن کاملA Constrained Multi-view Clustering Approach to Influence Role Detection
Twitter has provided people with an effective way to communicate and interact with each other. It is an undisputable fact that people's influence plays an important role in disseminating information over the Twitter social network. Although a number of research work on finding influential users have been reported in the literature, they never really seek to distinguish and analyze different inf...
متن کاملConstrained NMF-Based Multi-View Clustering on Unmapped Data
Existing multi-view clustering algorithms require that the data is completely or partially mapped between each pair of views. However, this requirement could not be satisfied in most practical settings. In this paper, we tackle the problem of multi-view clustering for unmapped data in the framework of NMF based clustering. With the help of inter-view constraints, we define the disagreement betw...
متن کاملIterative Views Agreement: An Iterative Low-Rank Based Structured Optimization Method to Multi-View Spectral Clustering
Multi-view spectral clustering, which aims at yielding an agreement or consensus data objects grouping across multi-views with their graph laplacian matrices, is a fundamental clustering problem. Among the existing methods, Low-Rank Representation (LRR) based method is quite superior in terms of its effectiveness, intuitiveness and robustness to noise corruptions. However, it aggressively tries...
متن کاملMultiple Clustering Views via Constrained Projections
It is well known that off-the-shelf clustering methods may discover different patterns in a given set of data. This is because each clustering algorithm has its own bias resulting from the optimization of different criteria. Furthermore, there is no ground truth against which the clustering result can be validated. Thus, no crossvalidation technique can be carried out to tune input parameters i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge and Information Systems
سال: 2012
ISSN: 0219-1377,0219-3116
DOI: 10.1007/s10115-012-0577-7